Foundation of Data Science: Unit V: Data Visualization

Three Dimensional Plotting

Matplotlib | Data Visualization

Matplotlib is the most popular choice for data visualization. While initially developed for plotting 2-D charts like histograms, bar charts, scatter plots, line plots, etc.,

Three Dimensional Plotting

• Matplotlib is the most popular choice for data visualization. While initially developed for plotting 2-D charts like histograms, bar charts, scatter plots, line plots, etc., Matplotlib has extended its capabilities to offer 3D plotting modules as well.

• First import the library :

    importmatplotlib.pyplot as plt

   from mpl_toolkits.mplot3d import Axes3D

• The first one is a standard import statement for plotting using matplotlib, which you would see for 2D plotting as well. The second import of the Axes3D class is required for enabling 3D projections. It is, otherwise, not used anywhere else.

• Create figure and axes

          fig = plt.figure(figsize=(4,4))

          ax = fig.add_subplot(111, projection='3d')

Output:

Example :

fig=plt.figure(figsize=(8,8))

ax=plt.axes(projection='3d')

ax.grid()

t=np.arange(0,10*np.pi,np.pi/50)

x=np.sin(t)

y=np.cos(t)

ax.plot3D(x,y,t)

ax.set_title('3D Parametric Plot')

# Set axes label

ax.set_xlabel('x',labelpad=20)

ax.set_ylabel('y', labelpad=20)

ax.set_zlabel('t', labelpad=20)

plt.show()

Output:

Foundation of Data Science: Unit V: Data Visualization : Tag: : Matplotlib | Data Visualization - Three Dimensional Plotting